Tuesday, September 02, 2025

Are there controversies in pitch and timbre perception research? [in 333 words]

European Starling (Sturnus vulgaris)

At the heart of human musicality lie fundamental questions about how we perceive sound. In the coming academic year our group will dedicate several meetings on exploring and clarifying the spectral percepts that might underlie musicality with an agenda set around some enduring controversies. These span the roles of learning, culture, and cross-species comparisons, as well as evolutionary explanations for why music holds such sway over human minds. 

Among the most debated topics is the relationship between pitch and timbre perception. Both pitch and timbre are percepts: mental constructs arising from acoustic input. In humans, pitch perception is central to melodic recognition. When we hear a melody, we tend to identify it by its sequence of relative pitches—hearing it as the “same” tune regardless of changes in timbre, loudness, or duration. This reliance on relative pitch is a cornerstone of human music cognition. 

But is pitch such a universal perceptual anchor? For years, researchers assumed so, pointing to songbirds as an obvious parallel. Birds, it was thought, must also use pitch cues, though often in the form of absolute rather than relative pitch. Yet recent evidence complicates this narrative. In a striking study, Bregman et al. (2016) reported that European starlings do not, in fact, rely on pitch when recognizing sequences of complex harmonic tones. Instead, they appear to attend more closely to spectral shape, or the broader distribution of energy across frequencies. 

This finding raises a further question: is it really the spectral envelope (i.e. spectral shape) that matters, or something more subtle? Because the methods used—particularly contour-preserving noise vocoding—leave open another possibility: birds may actually be attuned to fine spectral-temporal modulations, the intricate contours woven into sound. Such results remind us that perceptual categories humans take for granted may not map cleanly onto other species, and that the universality of pitch as a cognitive anchor remains an open, and fascinating, controversy (cf. Patel, 2017; ten Cate & Honing, 2025). 

N.B. These entries are part of a new series of explorations on the notion of Spectral Percepts (in 333 words each). 

Bregman, M. R., Patel, A. D. & Gentner, T. Q. (2016). Songbirds use spectral shape, not pitch, for sound pattern recognition. Proceedings of the National Academy of Sciences, 113(6), 1666–1671. doi: 10.1073/pnas.1515380113 

Patel, A. D. (2017). Why Doesn’t a Songbird (the European Starling) Use Pitch to Recognize Tone Sequences? The Informational Independence Hypothesis. Comparative Cognition & Behavior Reviews, 12, 19–32. doi: 10.3819/CCBR.2017.120003 

ten Cate, C. & Honing, H. (2025). Precursors of music and language in animals. In D. Sammler (Ed.), The Oxford Handbook of Language and Music. Oxford University Press. doi: 10.1093/oxfordhb/9780192894700.001.0001

Sunday, August 31, 2025

Is consonance a biological or a cultural phenomenon? [in 333 words]

Chick in consonance experiment (Chiandetti & Vallortigara, 2011).

The distinction between consonance and dissonance has long occupied a central place in the scientific study of auditory perception and music cognition. Consonant intervals are typically described as stable, harmonious, or pleasing, whereas dissonant intervals are often characterized as tense, unstable, or even harsh. Yet even these seemingly straightforward descriptions quickly lead to methodological debate. 

A central difficulty arises from the frequent conflation of “dissonance” with “roughness.” Roughness refers to a physiological effect caused by closely spaced frequencies interacting on the basilar membrane of the inner ear. This phenomenon is measurable, consistent, and largely universal across listeners. Consonance, however, is not reducible to physiology alone. Recent research emphasizes that consonance is a multidimensional construct, shaped by both acoustic properties such as harmonicity and by layers of cognitive and cultural familiarity (Lahdelma & Eerola, 2020). 

This controversy can be framed around two major questions (Harrison, 2021). First, do humans possess an innate preference for consonance over dissonance? Second, if such a preference exists, how might it be explained in evolutionary terms? A landmark study by McDermott et al. (2016) with the Tsimane’, an Amazonian group minimally exposed to Western music, found no consistent preference for consonant over dissonant intervals. Their conclusion was that what many listeners call “pleasant” is primarily shaped by cultural experience. 

This interpretation has been vigorously challenged. Bowling et al. (2017) cite empirical evidence from human infants (Trainor et al., 2002) and even non-human animals (Chiandetti & Vallortigara, 2011) that points toward at least some innate, hardwired auditory sensitivity. If so, consonance may reflect evolutionary selective pressures, possibly related to the spectral composition of human vocalizations and the neurophysiological mechanisms underlying pitch perception and auditory scene analysis. 

In the end, consonance appears to be neither purely biological nor purely cultural. Our ears detect roughness and harmonicity, but our minds interpret these sensations through cultural frameworks. What sounds stable in one tradition may sound unfamiliar in another. The consonance controversy thus highlights music cognition as an intricate interplay between biology and culture. 

N.B. These entries are part of a new series of explorations on the notion of Spectral Percepts (in 333 words each).

References

Bowling, D. L., Hoeschele, M., Gill, K. Z. & Fitch, W. T. (2017). The nature and nurture of musical consonance. Music Perception, 118–121. 

Chiandetti, C. & Vallortigara, G. (2011). Chicks like consonant music. Psychological Science, 22(10), 1270– 1273. https://doi.org/10.1177/0956797611418244 
 
Harrison, P. M. C. (2021). Three Questions concerning Consonance Perception. Music Perception, 337–339. https://doi.org/10.1525/MP.2021.38.3.337 
 
Lahdelma, I. & Eerola, T. (2020). Cultural familiarity and musical expertise impact the pleasantness of consonance/dissonance but not its perceived tension. Scientific Reports, 10(1), 8693. https://doi.org/10.1038/s41598-020-65615-8 
 
McDermott, J. H., Schultz, A. F., Undurraga, E. A. & Godoy, R. A. (2016). Indifference to dissonance in native Amazonians reveals cultural variation in music perception. Nature, 25, 21–25. https://doi.org/10.1038/nature18635 
 
Trainor, L. J. & Unrau, A. (2012). Development of Pitch and Music Perception. In Human Auditory Development (pp. 223–254). Springer. https://doi.org/10.1007/978-1-4614-1421-6_8

Thursday, August 28, 2025

Why does a well-tuned modern piano not sound out-of-tune?

Karlheinz Stockhausen is listening.

"Neue Musik ist anstrengend", wrote Die Zeit some time ago: "Der seit Pythagoras’ Zeiten unternommene Versuch, angenehme musikalische Klänge auf ganzzahlige Frequenzverhältnisse der Töne zurückzuführen, ist schon mathematisch zum Scheitern verurteilt. Außereuropäische Kulturen beweisen schließlich, dass unsere westliche Tonskala genauso wenig naturgegeben ist wie eine auf Dur und Moll beruhende Harmonik: Die indonesische Gamelan-Musik und Indiens Raga-Skalen klingen für europäische Ohren schräg."

The definition of music as “sound” wrongly suggests that music, like all natural phenomena, adheres to the laws of nature. In this case, the laws would be the acoustical patterns of sound such as the (harmonic) relationships in the structure of the dominant tones, which determine the timbre. This is an idea that has preoccupied primarily the mathematically oriented music scientists, from Pythagoras to Hermann von Helmholtz.

The first, and oldest, of these scientists, Pythagoras, observed, for example, that “beautiful” consonant intervals consist of simple frequency relationships (such as 2:3 or 3:4). Several centuries later, Galileo Galilei wrote that complex frequency relationships only “tormented” the eardrum.

But, for all their wisdom, Pythagoras, Galilei, and like-minded thinkers got it wrong. In music, the “beautiful,” so-called “whole-number” frequency relationships rarely occur—in fact, only when a composer dictates them. The composer often even has to have special instruments built to achieve them, as American composer Harry Partch did in the twentieth century.

Contemporary pianos are tuned in such a way that the sounds produced only approximate all those beautiful “natural” relationships. The tones of the instrument do not have simple whole number ratios, as in 2:3 or 3:4. Instead, they are tuned so that every octave is divided into twelve equal parts (a compromise to facilitate changes of key). The tones exist, therefore, not as whole number ratios of each other, but as multiples of 12√2 (1:1.05946).

According to Galilei, each and every one of these frequency relationships are “a torment” to the ear. But modern listeners experience them very differently. They don’t particularly care how an instrument is tuned, otherwise many a concertgoer would walk out of a piano recital because the piano sounded out of tune. It seems that our ears adapt quickly to “dissonant” frequencies. One might even conclude that whether a piano is “in tune” or “out of tune” is entirely irrelevant to our appreciation of music. 

[fragment from Honing, 2021; Published here earlier in 2012]

Honing, H. (2012). Een vertelling. In S. van der Maas, C. Hulshof, & P. Oldenhave (Eds.), Liber Plurum Vocum voor Rokus de Groot (pp. 150-154). Amsterdam: Universiteit van Amsterdam (ISBN 978-90-818488-0-0).Honing, H. (2021). Music Cognition: The Basics. Routledge. doi 10.4324/9781003158301Kursell, Julia (2011). Kräftespiel. Zur Dissymmetrie von Schall und Wahrnehmung. Zeitschrift für Medienwissenschaft, 2 (1), 24-40 DOI: 10.4472_zfmw.2010.0003Whalley, Ian. (2006). William A. Sethares: Tuning, Timbre, Spectrum, Scale (Second Edition). Computer Music Journal, 30 (2) DOI: 10.1162/comj.2006.30.2.92

Wednesday, August 27, 2025

What makes two melodies feel like the same song? [in 333 words]

(cf. Krumhansl, 1989).

One of the most intriguing questions in music cognition research is also one of the simplest: when are two melodies experienced as the same?

At first glance, the answer might seem obvious — they share the same notes, in the same order, with the same rhythm. But a closer look, across cultures and even across species, reveals a more complex picture. What our brains latch onto when recognizing a tune involves a web of spectral percepts — the fundamental features of sound that guide humans and other animals in interpreting auditory patterns. This may sound like a niche research topic, but it lies at the heart of debates about authorship, originality, and musical ownership.

Consider hearing a melody played in a different key or on an unfamiliar instrument. Most people can still recognize it. How is this possible? Explanations often point to intervallic structure — the sequence of pitch intervals between notes — the contour, which is the overall shape of a melody as it rises and falls, or timbre, often described as the “color” of sound, including brightness, texture, and loudness.

For decades, music research treated timbre as secondary — something layered over supposedly “meaningful” musical features like pitch and rhythm (cf. McAdams & Cunible, 1992). Increasing evidence now suggests timbre is not merely decorative but a core perceptual building block. Timbre may also support “relative listening,” the ability to track patterns of change across different features. Exploring it carefully could reveal flexible and universal aspects of music cognition previously underestimated.

Recognizing that humans and non-human animals may rely on different spectral cues is equally crucial for understanding music’s evolutionary roots. A melody meaningful to humans may not register as such for a zebra finch — and vice versa.

By broadening music cognition research to include timbre, spectral contour, and species-specific strategies, scientists hope to uncover the shared perceptual foundations of musicality. Such work moves us closer to answering a deceptively simple but deeply complex question: what truly makes two melodies feel like the same song?

N.B. These entries are part of a new series of explorations on the notion of Spectral Percepts (in 333 words each).

References

McAdams, S, & Cunible, J-C (1992). Perception of timbral analogies. Philosophical Transactions of the Royal Society B: Biological Sciences, 336, 383-389. 

Krumhansl, C. L. (1989). Why is musical timbre so hard to understand? In S. Nielzén & O. Olsson (Eds.), Structure and perception of electroacoustic sound and music (pp. 43– 53). Elsevier.

Saturday, July 12, 2025

Want to test your musical memory?

Test your musical memory! A beta version of #TuneTwins is now online at https://tunetwins.app.

Note: Some things may still not work perfectly here and there. Please let us know via the feedback button – it helps us a lot!

Big thanks to Jiaxin, Noah, Bas, Ashley, Berit and the Music Cognition Group at large ! 

Wednesday, June 18, 2025

What do Bach, bipedalism and a baby crying have in common?

Human beings seem to have an innate sense of both rhythm and time, but how much is it biological and how much is it cultural? 

Feel free to join the  BètaBreak on June 20th between 12:00 and 13:30 at Science Park 904, Amsterdam, to explore the relationship between music and time in an interdisciplinary discussion with insights from biology, evolution, musicology and philosophy with speakers from the University of Amsterdam, the University of Liverpool and the University of Oslo! 

Monday, May 19, 2025

Music in our genes?

© ILLC Blog, Illustration by Marianne de Heer Kloots


 

 
"In 1984, a curious study on musicality in animals was published. The researchers from Portland, Oregon trained pigeons to distinguish two pieces of music – one by Bach, the other by Stravinsky. If the birds got it right, they were rewarded with food. Afterwards, the same pigeons were exposed to new pieces of music from the same composers. Surprisingly, they were still able to determine which piece was composed by which composer.

This finding confronted researchers with a new set of questions. To what extent are animals musical? What does it even mean for an animal to be musical? And what can this teach us about musicality in humans?" 

(From Music in our genes, ILLC Blog).

The interview is based on an episode of the podcast “Talk that Science” – an initiative started by students from the University of Amsterdam.

• Listen to the episode here (in Dutch);
• Link to the English transcript can be found here.

Thursday, April 24, 2025

What is the use of the comparative approach in studying the origins of language and music?

Diagrammatic representation of the comparative
approach (as discussed in ten Cate & Honing, 2022/2025)
Comparative studies can be done in several ways. One approach is to examine the sounds made by animals and look for shared features or parallels with language or music. To study these, one can, for example, examine how the structure of a sequence of sounds compares to syntactic structures in language or rhythmic structures in music, or whether harmonic sounds are recognized by their pitch (like in music) or by their spectral structure (like in speech). The presence of such features can indicate that similar sensory or cognitive mechanisms may underlie their perception and production and those needed for language and music in humans. However, one needs to be cautious with drawing such conclusions. That a sound produced by an animal has certain features in common with language or music may be incidental and a result of human interpretation, rather than indicating shared mechanisms per se. Animal sounds showing, for example, a specific rhythmic pattern (e.g., in the call of the indri, a lemur species; De Gregorio et al., 2021) or that contain tones based on a harmonic series (e.g., in the hermit thrush; Doolittle et al., 2014), need not indicate an ability of the animal to perceive or produce rhythms or harmonic sounds in general, as is common in humans. To show this, it is necessary to demonstrate the perception or production of such patterns outside and beyond what is realized in the species-specific sound patterns. This requires a second approach: using controlled experiments to address whether animals can (learn to) distinguish and generalize artificially constructed sounds that differ in specific linguistic or musical features. The two approaches, observational-analytical and experimental, are complementary: the first one may hint at presence of a certain ability, while the second one can test its existence and the limits of the capacity (Adapted from: ten Cate & Honing, 2025).

De Gregorio, C., Valente, D., Raimondi, T., Torti, V., Miaretsoa, L., Friard, O., Giacoma, C., Ravignani, A. & Gamba, M. (2021). Categorical rhythms in a singing primate. Current Biology, 31(20), R1379–R1380. https://doi.org/10.1016/j.cub.2021.09.032 

Doolittle, E. L., Gingras, B., Endres, D. M. & Fitch, W. T. (2014). Overtone-based pitch selection in hermit thrush song: Unexpected convergence with scale construction in human music. Proceedings of the National Academy of Sciences, 11(46), 1–6. https://doi.org/10.1073/pnas.1406023111

Ten Cate, C. & & Honing, H. (2025). Precursors of Music and Language in Animals. Sammler, D. (ed.) Oxford Handbook of Language and Music Oxford: Oxford University Press. DOI 10.1093/oxfordhb/9780192894700.013.0026. Preprint: psyarxiv.com/4zxtr.

Tuesday, April 01, 2025

Wetenschap in de blogosfeer? [Dutch]

Uit De bloggende wetenschap (Folia), over Music Matters | A blog on music cognition:
"Ik weet niet direct wat muziekcognitie is, maar dat is geen probleem. Dit is een prima blog, gemaakt door een vakidioot die zo te zien met liefde over het onderwerp schrijft. Hij blogt niet veel, niet eens een keer per week, maar wel uitgebreid en nauwkeurig. En voor hem is het voordeel dat hij nu gedwongen is te schrijven, het proces van zijn onderzoek met zijn volgers te delen en zijn gedachten te structureren en te verwoorden."


Wednesday, November 06, 2024

Interested in a challenging postdoc position in Amsterdam?

MCG in November 2024.
We are currently looking for a postdoc researcher that likes to work on the intersection of music cognition, biology, and the cognitive sciences. If you are excited about doing this kind of research in an interdisciplinary environment, with a team of smart and friendly colleagues, then you may want to join us. 

More information, including details on how to apply, will be made available soon at our website.

Deadline for applications : 1 December 2024.